Laboratório de Materiais Carbonosos e Cerâmicos / Laboratório de Plasma Térmico

PUBLICAÇÕES RECENTES

2022

  1. "NMR spectral parameters of open- and closed-shell graphene nanoflakes: Orbital and hyperfine contributions”, F. A. L. de Souza, F. N. N. Pansini, L. F. Filho, A. R. Ambrozio, J. C. C. Freitas, W. L. Scopel. Carbon 2022;191:374-383 (https://doi.org/10.1016/j.carbon.2022.01.045)
  2. “Crude dry extract from Colocasia esculenta in association with poly(vinyl alcohol) as biomaterial to prepare bioactive wound dressing”, E. M. L. de Prado, G. A. de Paula, J. A. P. Dutra, D. F. Cipriano, R. R. Kitagawa, F. D. M. Siman, E. F. Meira, J. C. C. Freitas, J. A. Severi, L. G. Carreira, R. L. Oréfice, J. C. O. Villanova. Polym. Bulletin 2022 (https://doi.org/10.1007/s00289-022-04263-6)
  3. “Single step production of activated carbon from microalgae cultivated with urban wastewater”, R. N. Oss, R. F. Gonçalves, S. T. Cassini, M. A. Schettino Jr., D. F. Cipriano, J. C. C. Freitas. Algal Res. 2022;64:102669. (https://doi.org/10.1016/j.algal.2022.102669)
  4. “Synthesis of nanostructured iron oxides and study of the thermal crystallization process using DSC and in situ XRD experiments”, L. M. Darabian, G. R. Gonçalves, M. A. Schettino Jr., E. C. Passamani, J. C. C. Freitas. Mater. Chem. Phys. 2022;285:126065 (https://doi.org/10.1016/j.matchemphys.2022.126065)
  5. “Fundamental studies on zeolite–adsorbate interactions: designing a better aluminosilicate adsorbent for pollutants’ removal”, M. K. de Pietre, J. C. C. Freitas. Environ. Earth Sci. 2022;81:17. (https://doi.org/10.1007/s12665-021-10130-w)
  6. “A new magnetic composite with potential application in boron adsorption: Development, characterization, and removal tests”, C. N. Pinotti, L. M. de Souza, W. P. Marques, J. R. C. Provetti, H. C. Jesus, J. C. C. Freitas, P. S. S. Porto, E. P. Muniz, E. C. Passamani. Mater. Chem. Phys. 2022;277:125368 (https://doi.org/10.1016/j.matchemphys.2021.125368)
  7. VERBENO, C.H. ; PAES, V.Z.C. ; KROHLING, A.C. ; BUENO, T.E.P. ; GESHEV, J. ; VAN LIEROP, J. ; PASSAMANI, E.C. . Exchange bias and magnetic anisotropies in Co nanowire/IrMn film heterostructures. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, v. 546, p. 168768, 2022. (https://doi.org/10.1016/j.jmmm.2021.168768)
  8. KROHLING, A.C. ; LEITE, H.D. ; FETTAR, F. ; MOSSANG, E. ; TONNERRE, J.M. ; MAGALHÃES-PANIAGO, R. ; BUENO, T. E. P. ; Passamani, E.C. ou Passamani, E. ; Nascimento, V.P. . Origin and properties of an unexpected exchange bias of Ta/Ni80Fe20/Ir20Mn80/Ta heterostructures in ultrathin limit: impact of the oblique deposition and Ta/Ni80Fe20 alloying. THIN SOLID FILMS, v. 746, p. 139115-139123, 2022. (https://doi.org/10.1016/j.tsf.2022.139115)
  9. CABRAL, TADEU LUIZ GOMES ; DE MIRANDA, LUCAS THIAGO SIQUEIRA ; DE MELO RODRIGUES, DEBORA CARVALHO ; DE SOUZA, FÁBIO A L ; SCOPEL, WANDERLÃ L ; AMORIM, RODRIGO G . C-doping anisotropy effects on borophene electronic transport. JOURNAL OF PHYSICS-CONDENSED MATTER, v. 34, p. 095502, 2022. (https://doi.org/10.1088/1361-648X/ac3d54)
  10. SOUZA, EVERSON S. ; MENEZES, MARCOS G. ; SCOPEL, WANDERLÃ L. ; CAPAZ, RODRIGO B. . Spatially controlled graphene- lateral heterostructure for sensing applications: Insights from first-principles calculations. PHYSICAL REVIEW B, v. 105, p. 115413, 2022. (https://doi.org/10.1103/PhysRevB.105.115413)
  11. DE OLIVEIRA, IGOR S.S. ; DEUS, DOMINIKE P. DE A. ; SCOPEL, WANDERLÃ L. ; MIWA, ROBERTO H. . Tuning the electronic transport properties in few-layers GeP 3 intercalated by Cr-atoms. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, v. xx, p. 115242, 2022. (https://doi.org/10.1016/j.physe.2022.115242)
  12. PRETT, LUCAS CAMPAGNA ; VERISSIMO, MARCOS ; CARVALHO DE MELO RODRIGUES, DEBORA ; ALBUQUERQUE FILHO, MARCELO F. C. ; VENEZUELA, PEDRO ; SCOPEL, WANDERLA L. ; AMORIM, RODRIGO GARCIA . 2D GeP 3 and blue P: promising thermoelectric materials for room- and high-temperature applications. Materials Advances, v. 3, p. 4641, 2022. (https://doi.org/10.1039/d2ma00265e)

2021

  1. “Synthesis of bilayer films from regenerated cellulose nanofibers and poly(globalide) for skin tissue engineering applications”, H. R. Amaral, J. A. Wilson, R. J. F. C. do Amaral, I. Pasçu, F. C. S. de Oliveira, C. J. Kearney, J. C. C. Freitas, A. Heise. Carbohydr. Polym. 2021;252:117201 (https://doi.org/10.1016/j.carbpol.2020.117201)
  2. “Heterogeneous Fenton-like surface properties of oxygenated graphitic carbon nitride”, W. L. Oliveira, M. A. Ferreira, H. A. J. L. Mourão, M. J. M. Pires, V. Ferreira, H. F. Gorgulho, D. F. Cipriano, J. C. C. Freitas, V. R. Mastelaro, O. R. Nascimento, D. E. C. Ferreira, F. R. Fioravante, M. C. Pereira, J. P. de Mesquita. J. Colloid Interface Sci. 2021;587:479-488 (https://doi.org/10.1016/j.jcis.2020.12.031)
  3. “Nanostructured faujasite zeolite as metal ion adsorbent: kinetics, equilibrium adsorption and metal recovery studies”, M. B. Goncalves, D. V. C. Schmidt, F. S. dos Santos, D. F. Cipriano, G. R. Gonçalves, J. C. C. Freitas, M. K. de Pietre. Water Sci. Technol. 2021;83:358-371 (https://doi.org/10.2166/wst.2020.580)
  4. “Reply to Comment on ‘On the difficulties and pitfalls with the analysis of solid-state 13C NMR spectra in graphitic materials’“, J. C. C. Freitas. Appl. Magn. Reson. 2021;52:91-98 (https://doi.org/10.1007/s00723-020-01243-9)
  5. CUNHA, A.G.; CEVOLANI, M.B. ; CREMASCO, C.W. ; SCHETTINO, M.A. ; BUENO, T.E.P. ; EMMERICH, F.G. . An improved analyzer for measuring in-situ gas pressure in sealed quartz tube, and absolute and differential temperatures in heat treatments up to high temperatures. Journal of Instrumentation, v. 16, p. P07054, 2021. (https://doi.org/10.1088/1748-0221/16/07/P07054)
  6. OLIVEIRA, I. S. S. ; DEUS, D. P. A. ; OLIVEIRA, J. B. ; SCOPEL, W L ; MIWA, R. H. . Magnetic switch and electronic properties in chromium-intercalated two-dimensional GeP 3. PHYSICAL REVIEW MATERIALS, v. 5, p. 054002, 2021. (https://doi.org/10.1103/PhysRevMaterials.5.054002)
  7. OLIVEIRA, D. WILSON ; SCOPEL, WANDERLÃ L. ; ALÍ, A. ; FONTES, M.B. ; SVANIDZE, E. ; MOROSAN, E. ; SAITOVITCH, E.B. ; GONZALEZ, J.L. . Theoretical study of the pressure effects on the electronic and magnetic properties of Sc3In. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, v. 539, p. 168353, 2021. (https://doi.org/10.1016/j.jmmm.2021.168353)
  8. PROCOPIO, ERIK F. ; N BATISTA, NATHANAEL ; L DE SOUZA, FÁBIO A. ; PAZ, WENDEL S. ; PALACIOS, JUAN JOSÉ ; SCOPEL, WANDERLÃ L. . Emergence of Topological Edge States in Oxidized α-In 2 Se 3 Nanosheets: Implications for Field-Effect Transistors. Acs Applied Nano Materials, v. 4, p. 8154-8161, 2021. (https://doi.org/10.1021/acsanm.1c01394)
  9. Gonzalez, J.L.. Multifractal statistic of porous structures simulated through fully penetrable sphere models. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v. 567, p. 125695, 2021. (https://doi.org/10.1016/j.physa.2020.125695)
  10. PASCHOA, ANDERSON ; GONZALEZ, JORGE L. ; NASCIMENTO, VALBERTO P. ; PASSAMANI, EDSON C. . Extracting Stray Magnetic Fields from Thin Ferromagnetic Layers in Hybrid Superconducting/Ferromagnetic Heterostructures. Journal of Superconductivity and Novel Magnetism, v. 34, p. 3115-3124, 2021. (https://doi.org/10.1007/s10948-021-06052-0)

2020 

  1. Increased arc length and stability in a magnetic gliding arc discharge using a cylindrical notched cathode. https://doi.org/10.1088/1361-6595/ab876f
  2. Designed single-phase ZrO2 nanocrystals obtained by solvothermal syntheses. https://doi.org/10.1039/C9CE01992H
  3. Aproveitamento de precursores lignocelulósicos para produção de acetado de celulose. http://dx.doi.org/10.21577/0100-4042.20170500
  4. Production of Phosphorus-Containing Activated Carbons From Coffee Husk and Application in Adsorption Processes.http://dx.doi.org/10.21577/1984-6835.20200008
  5. Na,Ca-based catalysts supported on activated carbon for synthesis of biodiesel from soybean oil.https://doi.org/10.1016/j.matchemphys.2020.123173
  6. Simulations of NMR Relaxation in a Real Porous Structure: Pre-asymptotic Behavior to the Localization Regime. https://doi.org/10.1007/s00723-020-01200-6
  7. Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography. https://doi.org/10.1021/acs.energyfuels.0c00266
  8. Aplicação da RMN de 13C no estado sólido ao estudo dos teores de lignina e carboidratos em amostras de bagaço de cana submetidas a tratamento ácido. http://dx.doi.org/10.21577/1984-6835.20200051
  9.  13C NMR Parameters of Disordered Carbons: Atomistic Simulations, DFT Calculations, and Experimental Results. Journal of Physical Chemistry C. https://doi.org/10.1021/acs.jpcc.0c02921
  10. High-performance of activated biocarbon based on agricultural biomass waste applied for 2,4-D herbicide removing from water: Adsorption, kinetic and thermodynamic assessments. https://doi.org/10.1080/03601234.2020.1783178
  11. Study of thermal transformations in Na,Ca-based catalysts supported on activated carbon and their application in the synthesis of biodiesel from soybean oil. https://doi.org/10.1016/j.jece.2020.104208
  12. Eco-green biodiesel production from domestic waste cooking oil by transesterification using LiOH into basic catalysts mixtures. https://doi.org/10.1063/5.0005625
  13. Potential and limitations of 13C CP/MAS NMR spectroscopy to determine the lignin content of lignocellulosic feedstock. https://doi.org/10.1016/j.biombioe.2020.105792
  14.  2,4-dichlorophenoxyacetic acid (2,4-D) micropollutant herbicide removing from water using granular and powdered activated carbons: a comparison applied for water treatment and health safety. https://doi.org/10.1080/03601234.2019.1705113
  15. Recycling of graphite and metals from spent Li-ion batteries aiming the production of graphene/CoO-based electrochemical sensors. https://doi.org/10.1016/j.jece.2020.104689
  16. Physicochemical characterization and in vitro biological evaluation of solid compounds from furazolidone-based cyclodextrins for use as leishmanicidal agents.https://doi.org/10.1007/s13346-020-00841-1
  17. Reply to Comment on -On the Difficulties and Pitfalls with the Analysis of Solid-State 13C NMR Spectra in Graphitic Materials. https://doi.org/10.1007/s00723-020-01243-9
  18. Nanostructured faujasite zeolite as metal ion adsorbent: kinetics, equilibrium adsorption and metal recovery studies. https://doi.org/10.2166/wst.2020.580
  19. Tuning the Photocatalytic Water-Splitting Capability of Two-Dimensional α-In 2 Se 3 by Strain-Driven Band Gap Engineering for H 2 Production. https://doi.org/10.1039/C9CP06023E
  20. Embedded carbon nanowire in black phosphorene and C-doping: the rule to control electronic properties. https://doi.org/10.1088/1361-6528/ab7fd0
  21. Electrically Sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore. https://doi.org/10.1039/D0NR04363J
  22. Improved Removal Capacity and Equilibrium Time of Maghemite Nanoparticles Growth in Zeolite Type 5A for Pb(II) Adsorption. https://doi.org/10.3390/nano10091668
  23. Two methods for solving electrostatic problems with azimuthal symmetry. http://orcid.org/0000-0002-0409-5284
  24. Cobalt nanowire arrays grown on vicinal sapphire templates by DC magnetron sputtering. https://doi.org/10.1016/j.jmmm.2020.166854
  25. The influence of Cu spacer morphology in Cu/Py/Cu/Co/IrMn spin valves with induced non-collinear spin structures. https://doi.org/10.1016/j.jmmm.2020.166985
Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910